Mapping Federal Lands using MASTER data

Gunnison Gorge National Conservation Area

by
K. Eric Livo and Ken Watson

Introduction

- Integrated USGS/BLM Study:Gunnison Gorge NCA
- Characterize Surface Materials to correlate with:
 - Land use issues
 - Grazing, off-road use, groundwater salinity
 - Geochemistry of the Mancos Shale
 - Metals (Cretaceous black shale)
- Propagate Findings and Associations to New Areas

Overview

- Ongoing Remote Sensing Investigation
 - (work in progress)
- MASTER Data Characteristics
- Material Mapping Techniques
- Mapping Results
 - VNIR-SWIR (reflectance data): FeOx, clay, carbonate
 - Thermal-IR (emissivity): Quartz, Feldspar, Mafic Mins.

NASA/JPL
MASTER
flightlines
overlain on
Landsat TM

Aircraft data
50 Channels
Vis-SWIR
Thermal-IR

4 M Pixels

MASTER flightline Mosaic (lines 2-6)

Master data – Non-geocorrected

Master data - geocorrected

Mapping – VNIR - SWIR

- 1) Spectral Variability Examined Principle Components
- ------
- 2) Material Mapping (Identification)
 - R-square spectral mineral identification routine
 - Based on: spectral material library
 - Compares MASTER spectral absorption features with library
 - Best material 'fit' assigned to tested pixel (pixel independent)
- R-square Fit Routine requires:
 - Data calibrated to ground (absolute) reflectance
 - Absorption continuum removal (normalization)
 - Continuum end-points specific for each material test

MASTER Principle Components – showing spectral variability

MASTER Vegetation (all)

Vegetation Intensity

Library Mineral Spectra

MASTER data Mineral Spectra

MASTER Iron Oxides: hematitic-red, goethitic-green, lt. goethitic.-blue

MASTER Clays: kaolinitic-red, mixed-green, illite/smectite-blue

MASTER Carbonate + cryptobiotic soils & some dry vegetation

Mapping – Thermal-IR

- Material Mapping (classification)
 - Isocluster classification routine
 - Class spectra visually compared and identified (mineral mixtures)
 - Material class statistically derived (pixel dependent)
- Isocluster classification requires:
 - Data calibrated to relative emissivity
 - Common rock-forming spectral emissivity library (with mixtures)

Color Infrared Composite (left)

Thermal IR Classification Image (right)

Conclusions

- MASTER data results fall between:
 - Hyperspectral mineral identification and
 - Landsat material classification
- Preliminary Soils Characterization
 - Reflectance wavelengths: iron-oxides, clays, & sulfates
 - Thermal wavelengths: rock forming minerals
- MASTER data proved very useful in:
 - Locating material changes within the Mancos shale
 - Identifying certain mineral groups